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We derive a Monte Carlo Green function with a quadratic time-step bias, and point out the 
importance of properly simulating the discontinuities of the drift function at the nuclei. We 
suggest that for small atoms and molecules, where the nodes in the trial function are well 
separated, our algorithm enables one to use large time steps, thus gaining in precision of the 
ground-energy estimate by dramatically reducing the serial correlation of consecutive 
iterations. n> 1986 Academic Press, Inc. 

1. THEORY 

Consider the time-dependent Schroedinger equation in imaginary time 

-F=(X-E,,))(R, t), (1) 

where R is a 3N-dimensional vector of coordinates of N particles, and E, is the 
ground-state energy of the problem. 

Instead of 4 we will consider the time-dependent function 

f(R, t) = &R, t) IC/dR), (2) 

where tiT is a “trial” approximate solution for the ground state of the time-indepen- 
dent version of (1). f(R, t) can be interpreted as a probability density function of a 
statistical distribution. In this manner, we obtain a reduced variance of the 
stochastic estimate of the ground-state energy E, This idea was described by Kalos 
and co-workers [l], and then applied by Ceperley and co-workers [24], and 
Anderson and co-workers [S, 63. 

It is important that I,+~ be readily calculable, yet as accurate a solution as such a 
compromise can allow. If the particles are fermions, care should be taken to have 
tiT approximate the nodal regions as closely as possible [4]. 

It can be shown [4] that 4,(R) $T(R), where 4,(R) is the exact solution to the 
time-independent version of (l), is the asymptotic (as t + CO) solution to 

af (R, t) -p= -DV’f+DV.(Ff)+(E,(R)-E,)f, at 
130 

0021-9991/86 $3.00 
Copyright Q 1986 by Academic Press, Inc 
All rights of reproduction m any form reserved. 



QUADRATIC ACCURACY MONTE CARLO 131 

where E, is the “local energy” of the trial function, namely 

E,(R) = $,-VT (4) 

and “the drift” F is defined as 

F(R) = 2W.(R)/$.(R). (5) 

E,, is the ground-state energy, common to both (1) and (3). 
The objective of our paper is to amend the diffusion Monte Carlo technique for 

solving Eq. 3 [4] by modifying its algorithm to achieve more favourable time-step 
bias (without significant increase in computational cost). There exists an alternate 
technique (Green function Monte Carlo [9]) with no time-step bias; this is accom- 
plished at the expense of substantially increased branching (thus adversely affecting 
the statistical error of the procedure). We have chosen to work only with the former 
technique, which we prefer for its relative simplicity and higher statistical accuracy. 
The error due to finite time step can be easily removed by subsequent regression 
(see the next section). 

Rewriting (3) as 

(the xs corresponding to the three individual terms on the right-hand side of 
Eq. 3) in a manner similar to that of Grimm and Storer [7], one can express the 
Green function of Eq. (3), i.e., %(R + R’, t), in terms of the individual Green 
functions $(R + R’, t) of 

-X=&1; i=o, 1, 2. 

The result is 

Y(R+R’, t)=jda, LB,&, dR,‘3JR -‘RI, t/2).gI(R, +R,, r/2) 

xgO(R2 -+R3, t).gI(R3 -+Rq, t/2).91z(R,+ R’, t/2)+ O(t3), (8) 

where O(t’) is an operator of third order in t. 
Green functions gO and $ are well known: 

%(R + R’, t) = (47~Dt)-~~/~ exp{ -(R’ - R)2/4Dt} 

?&(R + R’, t) = exp{ - (E,(R) - E,) t} * 6(R - R’). 

(9) 

(10) 

FZI (derived in Appendix A) is equal to 

%,(R -+ R’, t) = b(R’- R(r)), (11) 
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where R(t) is the position of the particles at time t, if they are subjected to the drift 
DF, and being initially (t = 0) at R. More precisely, R(t) is defined as the solution 
to the following set of differential equations: 

dR( t)/dt = DF(R( t)) (12) 

with R(0) = R. 
After substituting Green functions (9)( 11) into Formula (8), one may perform 

the trivial integration over R,, R,, and R, to obtain 

CQR + R’, t) = (4dbp3N’2 -xp{ -N&W + &OWP - &II 
x 

i 
dR,G(R’-R,(t/2)).exp{ - (R(t/2)-R,)*/4Dt} + O(t3). (13) 

The above delta function has as its argument a function of R,, therefore it must 
be replaced (see [8]) by 

14) 

at 

6(R,-R’(-t/2)).J~‘(R,(t/2), R3)lRj=R’(-r/2), ( 

where .Z is the Jacobian of the transformaton in parentheses. It is evaluated 
R, = R’( - t/2) because this is the only value of R, which meets 

R’ - R3( t/2) = 0. ( 

Integration in Formula 13 is now trivial. We get as the result 

Y(R + R’, t) = (4dlt) -. 3”‘2expr-tC(E,(R)+E,(R’))/2-E,1) 
. exp { - (R( t/2) - R’( - t/2))*/4Dt > 

15) 

.ZP’(R3(t/2), R3)/&=~‘(1,2) + o(t3). (16) 

We now expand R( t/2), defined by (12), as a Taylor series in t: 

R(t/2) = R + DtF(R)/2 + D’t*H(R) F(R)/8 + . , (17) 

where H is the matrix of all spatial derivatives of F. Substituting (17) and its analog 
for R’( -t/2) into Eq. (16) leads to the following further simplification: 

‘S(R + R’, t) = (4nDt) ~ 3N’2.exp{ - t[(E,(R) + E,(R’))/2 - &,I} 

x exp( - [R’- R - (Dt/2)(F(R’) + F(R))]*/4Dt} 

x det {I- (Dt/2) H(R’)} + O(t3), (18) 

where Z is the unit matrix. This simplification is due to the fact that the contribution 
of 

- (Dt/l6)(R’ - R) . [H(R’) F(R’) - H(R) F(R)] (19) 
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(a term in the expansion of the second exponent in Eq. (16)) to the overall 99 is the 
same as that of 

D2t2 
8 Trace f (HF)I,,, (20) 

which is the quadratic term in the expansion of the Jacobian. The analytic proof of 
the legitimacy of this “trade-off-’ has been published elsewhere [lo] by one of us. 

One can now simulate (18) by a Monte Carlo procedure combining drift, dif- 
fusion, and branching of a random assemble of contigurations [4]. Proper care has 
to be taken to simulate these with the required accuracy. Specifically, as most trial 
functions result in F-discontinuities (at the nuclei), it is erroneous to simulate the 
drift at R, by tDF(R,) when R, is very close to a nucleus (the “overshooting” 
effect), and an appropriate correction is called for (see Sect. 3). (The discontinuities 
due to two electrons coalescing, being of repulsive nature, can be simulated without 
any such correction). 

Similarly, since E,(R) has many singularities (due to V(R) and incorrect nodes of 
tiT), one must ensure that the corresponding branching remains t2-accurate. There 
is no experimental nor theoretical indication that positive singularities of E, should 
create any problem, mainly because of proper convergence of the three-dimensional 
Svexp{-t/r}dr (V’ IS a small volume centered at the origin). On the other hand, 
for negative singularities, since jv exp ( + t/r} dr = co, it is impossible to simulate the 
exact branching correctly. If these singularities are truncated in a t-neighborhood of 
each singularity, a quadratic perturbation of the original equation will result, and 
branching poses no difficulty. Furthermore, by keeping the expected number of 
configurations in each iteration constant (as we propose in Sect. 2), an effective 
truncation of the singularities is achieved automatically (at the expense of introduc- 
ing a quadratic bias). Keeping in mind the above pitfalls (which will plague any 
simulation algorithm) we proceed with a detailed description of how to simulate 
(18). 

To preserve the efficciency of the algorithm, we need to use a procedure requiring 
only one evaluation of F and E, per time step. At the same time, to preserve the t2- 
accuracy of (18), it is necessary to use a t2-accurate R’ (thus, F(R’) needs to be only 
t-accurate), followed by branching which requires only a t-accurate value of EL@‘). 

Figure 1 shows how to perform the actual simulation, meeting the above objec- 

/ 
D,F(R) -- 

R 

FIG. 1. Description of the move R -+ R’. 
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tives. The values of F(Rb), E,(Rb) and R' are stored to become F(R), E,(R) and R, 
respectively, of the next time step. 

In the figure N(0, (2Dt)‘/*) represents a random 3N-dimensional vector with 
components independently generated from a symmetric distribution centered at 
zero, with the variance equal to 2Dt and the forth moment equal to 12D2t2. The 
normal distribution is used routinely here, in spite of the fact that it corresponds to 
the least economical choice, and also results in a large error when not corrected for 
the discontinuities in F (see Sect. 3 and Fig. 2). We propose using 

+2.44886(+.0542927), (21) 

where < is uniformly distributed over the interval (0, 1) and f represents a random 
sign, as an attractive alternative. 

-1.144c 

-1.148C 

-I 1520 

-11560 

-1.1600 

, 

I- 

/ - 

3 

0.0 

-11640 

w 
-1.1680 

-11760 

FIG. 2. Total energy of H, molecule versus time step. Results with continuity correction (30) and 
normal distribution (V), with continuity correction (28), and non-normal distribution of Section l(O), 
and without continuity correction and normal distribution (0 ). 
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2. ALGORITHM 

Choose a specific small value of the time step t, also generate a set of M 3N- 
dimensional configurations (m)R, m = 1, 2,..., A4, from an arbitrary initial dis- 
tribution. Advance each of the M configurations in accord with Fig. 1. Then, for 
each configuration, compute the following quantity: 

B,=exp{-t/2(E,(‘“‘Rb)+E,(‘“‘R))} 

and find its average value 

(22) 

B= f B,IM (23) 
m=l 

For each m, take M, copies of the new configuration (m)R’ to create a new list of 
M’ configurations, where 

M,=int{B,/B+5}, (24) 

[ is a uniform random number from the interval (0, l), M’ is the sum of all these 
Mm-values. At the same time, -log,{B}/t provides an estimate of I$,. One should 
note (see Appendix B) that this estimate is, within the t*-accuracy, equivalent to 

C”:, E,(‘“‘Rb) I”=, EL(@)R) m m 
2M’ + 2M ’ (25) 

where the first summation is over the new list of configurations (after branching). 
The subsequent time steps (iterations) will thus consist of a variable (M’ say) 

number of configurations. The energy estimate is always given by -log,(B)/& 
where B is the average value of B, over the M’ configurations. However, one must 
use the following modified version of (23) to prevent a random “extinction” or 
“explosion” of the “population” of configurations, which would otherwise be an 
inevitable consequence of the well-known laws of stochastic processes: 

M, = int { (B,/@ . (M/M’) + [} (26) 

Repeat these iterations a large number (usually a few thousand) of times to 
reduce the statistical error of the overall estimate of E, (obtained by simple averag- 
ing of the individual estimates, excluding the first few iterations which are required 
for the process to reach the stationary solution). 

To determine the standard error of this overall mean, divide all iterations into 
several large blocks of the same size, compute the block averages, then combine 
them using the ordinary statistical formula for independent observations (which the 
block averages practically are) to get the error bar of the &-estimate. 

Finally, repeat the whole procedure for several (four to six) distinct values of t. 
Each of the grand-mean estimates of E, will have a systematic error (bias) of the t2- 
order (i.e., E,(t) = E,, + a. t* + . .. ) which can be removed by the standard 
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(weighted) least-squares lit. The regression inercept provides an unbiased estimate 
of the ground-state energy E,. How to choose an appropriate polynomial model for 
E,(t) and how to design a simulation with optimal choice of the t-values and the 
corresponding CPU allocation will be discussed in a future publication [ 111. 

3. CONTINUITY CORRECTION 

To ensure continuity of F at the nuclei (which is required by the quadratic 
algorithm) we had to modify the simulation of the tDF-drift as follows: 

For each of the N electrons, define ro) to be the 3-dimensional distance front the 
electron to its nearest nucleus. Let F, j) be the corresponding 3-dimensional “com- 
ponent” of F; then 

(27) 

is the time at which this electron would reach its closest distance to the nucleus, if it 
were to move with constant velocity DFtj,. When this point of closest distance is 
“within sight” of the subsequent tDF,,, “drift” (see Fig. I), say when 0 < tcj) < 2t, 
redefine F(,, by replacing it with 

F;,) = (2W(jj - Wfj)) ’ Cwf$F(j) + (1 - Wf$) rci,/~tciJ, 6’8) 

where wtj) = tcj,/2t. The first factor causes the magnitude of F’ continuously 
decrease to zero (at the closest distance to nucleus), the second one results in a con- 
tinuous change of direction, turning F towards the nucleus. Thus, the drift actually 
simulated will prohibit electrons from “overshooting” past a nucleus (algorithms 
allowing this result in a very detrimental contribution to the error of the E,(t) 
estimates). 

This modification of F,,,, repeated for each electron, obviously makes it con- 
tinuous at each nucleus. Since the modification is done only in a t-neighborhood of 
a nucleus, it is not necessary to correspondingly modify the local energy E,(R). 
This is due to the fact that the difference between the properly modified E, and the 
original E, can be considered a t2-order perturbation of Eq. 3, and as such inconse- 
quential. In choosing (28) we attempted to approximate the exact (i.e., continuous 
in time) drift due to the original F(R(t)) as accurately as possible. Nevertheless, 
there is definitely room for additional improvement of this part of the algorithm. 

One such alternative (presently without a theoretical justification) is to modify 
the computation of F (but not of EL) at all R by replacing eoery term of the type 

C(R) ’ r(j,k)ll r(j,k) I 

(C(R) being a continuous function) by 

(29) 

C(R).r(j,k)l(Ir(j,k)I +LY.~. IC(R)I), (30) 
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where rCi,kJ is the 3-dimensional distance from the jth electron to the kth nucleus, 
and a is an adjustable parameter. For the hydrogen molecule, the value of a = 0.65 
gives very good results in conjunction with the normal distribution (see Fig. 2) the 
alternate distribution of Formula (21) requires a = 0.3. 

4. APPLICATION AND DISCUSSION 

For illustration purposes we applied the algorithm to the ground state of 
Hydrogen molecule. The trial function we used was that of [4], with distances in 
atomic units: 

ICI== [exp( - 1.285r,,} + exp{ - 1.285r,,}]. [exp{ - 1.285r,,} 

+ exp{ - 1.285r,,}] . exp{.28r,,/(l + .05r,,)}. (31) 

An initial list of M= 2000 configurations was randomly generated from an 
arbitrary distribution. After reaching equilibrium, these were advanced through 200 
iterations per block. Sufficient number of blocks were used to make the error bars 

TABLE I 

Diffusion Monte Carlo Estimates of the Ground State Energy of HT’ 

With continuity correction Without continuity correctiond 

t E,(t)’ 0 -‘A(t)’ I7 E,(t) rJ 

0.1 - 1.1735 
0.2 - 1.1722 
0.3 - 1.1683 
0.4 - 1.1639 
0.5 - 1.1594 

2(-4) - 1.1734 3(-4) - 1.1792 4(-4) 
2(-4) - 1.1679 2(-4) - 1.1809 4( -4) 
l(-4) - 1.1604 2(-4) - 1.1785 2( -4) 
3( -4) - 1.1518 2(-4) - 1.1734 l(-4) 
2(-4) - 1.1435 l(-4) - 1.1656 3(-4) 

Model 

E,(I) = E. + at2 + br4 

E,= -1.1745+.0002 -1.1749*.0003 
a= ,073s + .0037 .1801~.0046 
6 = -.0509_+.0132 -.2180*.0154 

E,(t) = E, + at + bt’+ ct4 

E,= -1.1741~.0012 
a= -.0702*.0126 
b= .1905*.0321 
c= -.0640+.0497 

a All quantities are in atomic units. 
b Each simulation uses an initial list of 2000 configurations and 200 iterations per block. Averages and 

standard deviations are obtained from 3 (largest t) to 12 (smallest t) blocks, discarding the results of the 
first block. Ey = - 1.1745 a.u. and $T is given by (31), with the nuclei separation of 1.401 a.u. (taken 
from [4]). 

’ Using continuity correction (28), and non-normal distribution of Section 1. 
d Without continuity correction, using the normal distribution. 
’ Using continuity correction (30) and the normal distribution. 
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of individual energy estimates (calculated at five distinct values of t) reasonably 
small. 

The results are reported in Table I (plotted in Fig. 2) for both the normal dis- 
tribution, and that of Formula (21). Also displayed is a set of results obtained by 
ignoring the discontinuities in F, and using the normal distribution. The weighted 
least-squares estimates of the E,(t = 0) intercept are calculated, using the inverse of 
the observed variance for weights. The quadratic behaviour of our results is readily 
apparent; one can also observe how detrimental is the F-discontinuity (especially in 
combination with the normal distribution) when not properly corrected for. 

APPENDIX A 

We require a solution to the following differential equation: 

- %?(R + R’, t) 
at = DV,, . [F(R’) 9-j 

satisfying the boundary condition %(R + R’, 0) = 6(R’ - R). 
We will demonstrate that the solution is given by 

9(R + R’, t) = 6(R’ - R(t)), 

where 
a(t) - = DF(R( t)) 

dt 

(Al 1 

(AZ) 

(A3) 

with R(0) = R. 
By inspection the solution is correct at t = 0. Now, substituting (A2) and (A3) 

into (Al) yields 

DF(R(t)). 6’(R’- R(t)) = D. [F(R’) 6’(R’- R(t)) + 6(R’- R(t)) V. F(R’)]. (A4) 

Multiplying (A4) by an arbitrary function X(R’) and integrating over R’ we 
obtain 

-D[F.VX].(,,= D.[-(VX)F-XV.F+XV.F],C,, (A51 

which is an identity. Thus (A2) is the desired solution to (Al ). 

APPENDIX B 

In this Appendix we will establish the equivalence of -log. {B}/t and (25) 
within the t2-accuracy. In the following ( ... ) will denote averaging over all con- 
figurations before branching, (( . . . > will imply the same averaging after branching. 
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From Formula (22) we obtain 

(Bi)=l-;(Ei+E~)+t2((Ei+E;)2)/8+ ‘..) (Bl) 

where Ei = EL((i)R), and E: = E,(“‘Rb) see Fig. 1. 
Thus 

=i (Ei) +t (E:. [B,/(B,)]) + ... =;(E~) +:<E;> + -.(~2) 

since 

and 

Ei= E;+ O(t) 033) 

(B4) 

ACKNOWLEDGMENTS 

Valuable critical comments on our work were provided by Dr. Peter J. Reynolds. Some of this work 
was carried out while one of us (SMR) was a guest in the laboratory of Professor William A. Lester, Jr. 
His hospitality is gratefully acknowledged. This work was supported, in part, by grants from the Natural 
Sciences and Engineering Research Council of Canada. 

REFERENCES 

1. M. H. KALOS, D. LEVESQUE, AND L. VERLET, Phys. Rev. A 9 (1974), 2178. 
2. D. M. CEPERLEY, AND B. J. ADLER, Phys. Rev. Left. 45 (1980), 566. 
3. D. M. CEPERLEY, in “Recent Progress In Many-Body Theories” (J. G. ZABOLITZKY, M. DE LLANO, 

M. FORTES, AND J. W. CLARK, Eds.), pp. 262-269, Springer-Verlag, Berlin, 1981. 
4. P. J. REYNOLDS, D. M. CEPERLEY, B. J. ADLER AND W. A. LESTER, Jr., J. Chem. Phys. 77 (1982), 

5593. 
5. J. B. ANDERSON, J. Chem. Phys. 73 (1980), 3897. 
6. F. MENTCH AND J. B. ANDERSON, J. Chem. Phys. 74 (1981), 6307. 
7. R. GRIMM AND R. G. STORER, J. Comput. Phys. 4 (1969), 230. 
8. B. FRIEDMAN, “Principles and Techniques of Applied Mathematics,” p. 290, Wiley, New York. 
9. D. M. CEPERLEY, J. Comput. Phys. 51 (1983), 404. 

10. J. VRLIIK, J. of Physics A 18 (1985), 1327. 
11. J. VRLUK AND S. M. ROTHSTEIN, Optimal Spacing and Weights in Diffusion Monte Carlo, Intern’1 J. 

Quantum Chem., to appear. 


